

SmartCheck

™

 Basics

NuMega

™

 SmartCheck

™

 6

Automatic Run-Time Error Diagnosis for Visual Basic

®

Windows

®

 95
Windows

®

 98
Windows NT

®

July 1998

Information in this document is subject to change without notice and does not represent a commitment on the part
of Compuware Corporation. The software described in this document may be used or copied only in accordance with
the terms of the license. The purchaser may make one copy of the software for a backup, but no part of this user
manual may be reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic or
mechanical, including photocopying and recording for any purpose other than the purchaser’s personal use, without
prior written permission from Compuware Corporation.

NOTICE: The accompanying software product is confidential and proprietary to Compuware Corporation. No use
or disclosure is permitted other than as expressly set forth by written license with Compuware Corporation.

Copyright © 1998 Compuware Corporation

All Rights Reserved

Compuware, the Compuware logo, NuMega, the NuMega logo, Making Software Work, SmartCheck, the
SmartCheck logo, Automatic Run-Time Error Diagnosis, EventDebugging, ActiveCheck, FinalCheck, and Smart
Debugging, are either trademarks or registered trademarks of Compuware Corporation.

Microsoft, Windows, Win32, Windows NT, Visual Basic and Visual C++ are either trademarks or registered
trademarks of Microsoft Corporation.

Other brand and product names are either trademarks or registered trademarks of their respective holders.

Part number 0000-55-2748

Revision 3

This Software License Agreement is not applicable if you have a valid Compuware License Agreement and have licensed this Software under a Compuware Product Schedule.

Software License Agreement

Please Read This License Carefully

You are purchasing a license to use Compuware Corporation Software. The Software is the property of Compuware Corporation and/or its licensors, is protected by intellectual property laws, and
is provided to You only on the license terms set forth below. This Agreement does not transfer title to the intellectual property contained in the Software. Compuware reserves all rights not
expressly granted to you. Opening the package and/or using the Software indicates your acceptance of these terms. If you do not agree to all of the terms and conditions, or if after using the
Software you are dissatisfied, return the Software, manuals and any copies within thirty (30) days of purchase to the party from whom you received it for a refund, subject in certain cases to a
restocking fee.

Title and Proprietary Rights: You acknowledge and agree that the Software is proprietary to Compuware and/or its licensors, and is protected under the laws of the United States and other
countries. You further acknowledge and agree that all rights, title and interest in and to the Software, including intellectual property rights, are and shall remain with Compuware and/or its
licensors. Unauthorized reproduction or distribution is subject to civil and criminal penalties.

Use Of The Software: Compuware Corporation ("Compuware") grants a single individual (“You”) the limited right to use the Compuware software product(s) and user manuals included in the
package with this license ("Software"), subject to the terms and conditions of this Agreement. You agree that the Software will be used solely for your internal purposes, and that at any one time,
the Software will be installed on a single computer only. If the Software is installed on a network system or on a computer connected to a file server or other system that physically allows shared
access to the Software, You agree to provide technical or procedural methods to prevent use of the Software by more than one individual. Individuals other than You may not have access to the
Software even at different times.

One machine-readable copy of the Software may be made for BACK UP PURPOSES ONLY, and the copy shall display all proprietary notices, and be labeled externally to show that the back-up
copy is the property of Compuware, and that its use is subject to this License. Documentation may not be copied in whole or part.

You may not use, transfer, assign, export or in any way permit the Software to be used outside of the country of purchase, unless authorized in writing by Compuware.

Except as expressly provided in this License, You may not modify, reverse engineer, decompile, disassemble, distribute, sub-license, sell, rent, lease, give or in any way transfer, by any means or in
any medium, including telecommunications, the Software. You will use your best efforts and take all reasonable steps to protect the Software from unauthorized use, copying or dissemination, and
will maintain all proprietary notices intact.

Government Users: With respect to any acquisition of the Software by or for any unit or agency of the United States Government, the Software shall be classified as "commercial computer
software", as that term is defined in the applicable provisions of the Federal Acquisition Regulation (the "FAR") and supplements thereto, including the Department of Defense (DoD) FAR
Supplement (the "DFARS"). If the Software is supplied for use by DoD, the Software is delivered subject to the terms of this Agreement and either (i) in accordance with DFARS 227.7202-1(a)
and 227.7202-3(a), or (ii) with restricted rights in accordance with DFARS 252.227-7013(c)(1)(ii) (OCT 1988), as applicable. If the Software is supplied for use by a Federal agency other than
DoD, the Software is restricted computer software delivered subject to the terms of this Agreement and (i) FAR 12.212(a); (ii) FAR 52.227-19; or (iii) FAR 52.227-14(ALT III), as applicable.
Licensor: Compuware Corporation, 31440 Northwestern Highway, Farmington Hills, Michigan 48334.

Limited Warranty and Remedy: Compuware warrants the Software media to be free of defects in workmanship for a period of ninety (90) days from purchase. During this period, Compuware will
replace at no cost any such media returned to Compuware, postage prepaid. This service is Compuware's sole liability under this warranty. COMPUWARE DISCLAIMS ALL EXPRESS AND
IMPLIED WARRANTIES, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. SOME STATES DO NOT
ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. IN THAT EVENT, ANY IMPLIED WARRANTIES ARE
LIMITED IN DURATION TO THIRTY (30) DAYS FROM THE DELIVERY OF THE SOFTWARE. YOU MAY HAVE OTHER RIGHTS, WHICH VARY FROM STATE TO STATE.

Infringement of Intellectual Property Rights: In the event of an intellectual property right claim, Compuware agrees to indemnify and hold You harmless provided You give Compuware prompt
written notice of such claim, permit Compuware to defend or settle the claim and provide all reasonable assistance to Compuware in defending or settling the claim. In the defense or settlement of
such claim, Compuware may obtain for You the right to continue using the Software or replace or modify the Software so that it avoids such claim, or if such remedies are not reasonably available,
accept the return of the infringing Software and provide You with a pro-rata refund of the license fees paid for such Software based on a three (3) year use period.

Limitation of Liability: YOU ASSUME THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE SOFTWARE. IN NO EVENT WILL COMPUWARE BE LIABLE
TO YOU OR TO ANY THIRD PARTY FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING BUT NOT LIMITED TO, LOSS OF
USE, DATA, REVENUES OR PROFITS, ARISING OUT OF OR IN CONNECTION WITH THIS AGREEMENT OR THE USE, OPERATION OR PERFORMANCE OF THE
SOFTWARE, WHETHER SUCH LIABILITY ARISES FROM ANY CLAIM BASED UPON CONTRACT, WARRANTY, TORT (INCLUDING NEGLIGENCE), PRODUCT LIABILITY
OR OTHERWISE, AND WHETHER OR NOT COMPUWARE OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE. SOME
STATES DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR
EXCLUSION MAY NOT APPLY TO YOU. IN NO EVENT SHALL COMPUWARE BE LIABLE TO YOU FOR AMOUNTS IN EXCESS OF PURCHASE PRICE PAID FOR THE
SOFTWARE.

Terms and Termination

This License Agreement shall be effective upon your acceptance of this Agreement and shall continue until terminated by mutual consent, or by election of either You or Compuware in case of the
other’s unremediated material breach. In case of any termination of the Agreement, you will immediately return to Compuware the Software that You have obtained under this Agreement and will
certify in writing that all copies of the Software have been returned or erased from the memory of your computer or made non-readable.

General: This License is the complete and exclusive statement of the parties' agreement. Should any provision of this License be held to be invalid by any court of competent jurisdiction, that
provision will be enforced to the maximum extent permissible and the remainder of the License shall nonetheless remain in full force and effect. This Agreement shall be governed by the laws of the
State of Michigan and the United States of America.

NuMega SmartCheck v

Chapter 1: The SmartCheck Solution

1

Check Early, Check Often— Our Philosophy

1

The Benefits of Using SmartCheck

2

Fatal Runtime Error Analysis

 2

Error And Event Tracking and Logging

 3

Windows API Checking

 3

Visual Basic Argument Checking

 4

Value Coercion Detection

 4

Error Detection in Third-party Components

 4

Flexible Environment

5

Windows Compliance Assurance

5

Customer Assistance

5

For Non-technical Issues

 5

For Technical Issues

 6

Where to Go From Here

7

Chapter 2: Checking and Analyzing
Programs

9

Starting SmartCheck from Visual Basic

10

Checking Programs With SmartCheck

11

Starting SmartCheck From the Command Line

 13

Turning Event Reporting On and Off

 13

Viewing the Results of Your Error Detection Session

14

Locating Errors

 14

Displaying Source Code and Call Stack Data

 14

Using the Call Stack

 15

Going to Source Code in Visual Basic

 15

Displaying Help for the Error

 16

Suppressing Errors

 16

Changing the Results View

 17

Viewing Version Information

 20

Printing or Saving Your Results

20

Chapter 3: Customizing Error Detection and
Reporting

21

Customizing Program Settings

22

Customizing Error Detection Settings

 22

Customizing Reporting Settings

 23

Files To Check

 24

Customizing Program Information Settings

 25

Customizing Error Suppression Settings

 25

Chapter 4: Checking Compliance

27

Checking API Compliance

28

To Produce a Program Compliance Report

 28

To Produce an Event Compliance Report

 29

Contents

vi SmartCheck Basics

Contents

NuMega SmartCheck 1

1

The SmartCheck

Solution

The need for software development teams to produce quality software is greater than ever
before. The complexity of software has grown geometrically and the opportunity for problems
to develop is immense. Software defects can cripple a product, cause lengthy schedule delays,
and ultimately cost the engineer, the development team, and the company dearly.

Developers spend most of their debugging time tracking down and repairing elusive bugs that
were introduced early in development. The quality assurance staff does the bulk of the feature
testing late in the development process when the schedule allows little time. Unfortunately,
testing at this late stage usually focuses only on the outward functionality of the product.
Testers run a GUI regression test bed, achieve exit criteria, and declare the product ready for
shipping.

All too often, the product still possesses many hidden bugs that conventional testing
techniques failed to identify. These bugs create customer dissatisfaction and poor product
reputation. Updates, patches, and other expensive, embarrassing retroactive fixes cost time
and money that could be spent more profitably and creatively on product improvement and
new product development.

Check Early, Check Often— Our Philosophy

The solution to this problem is simple and quality assurance circles have been aware of it for
years. To increase software quality, developers must thoroughly test their code early in the
development process. Bugs must be caught and resolved as they are introduced to avoid
surprises during integration, quality assurance, beta testing, and production. Briefly stated,
“check early, check often.”

2 SmartCheck Basics

The SmartCheck Solution

Before NuMega debugging solutions, this was easier said than done. Most developers need to
spend the majority of their time writing code if they are to release a product on schedule.
Unfortunately, few developers have the time or resources to test their products thoroughly as
they develop them.

SmartCheck provides the solution to this dilemma. SmartCheck automates the crucial process
of error-detection and analysis, identifies elusive bugs that are beyond the reach of traditional
debugging and testing techniques, and adds little or no time to the development process.

Industry figures show that 50 percent of the development effort on an average project is spent
on debugging. Regularly using SmartCheck will significantly reduce the amount of time
needed to debug your applications.

The Benefits of Using SmartCheck

SmartCheck is the first run-time debugging tool for Visual Basic to provide clear, detailed
analysis of program errors and detailed tracking and logging of program events. It
automatically detects and diagnoses Visual Basic runtime errors and translates vague error
messages into exact problem descriptions. As such, it serves as an invaluable development tool
for both novice and experienced Visual Basic developers.

SmartCheck addresses the most hard-to-solve conditions encountered by Visual Basic
developers:

• Fatal run-time errors that are cryptic and hard to solve.

• Problems that result from a specific sequence of events.

• Incorrect Windows API Usage from Visual Basic.

• Bad values passed to built-in Visual Basic functions.

• Hard-to-solve value coercions.

• Errors in components, such as ActiveX controls, used by your program

The rest of this section describes how SmartCheck addresses each of these conditions.

Fatal Runtime Error Analysis

When a runtime error occurs, Visual Basic only reports the general category of the error, and
prompts you to acknowledge the error message. In contrast, SmartCheck performs detailed
analysis of fatal runtime errors, providing specific information on the cause, and possible
solutions, and pinpointing the line in source code at which the error occurred. For example,
the Visual Basic runtime error “429 - ActiveX component can’t create object” represents many

The Benefits of Using SmartCheck

NuMega SmartCheck 3

different error conditions that SmartCheck detects and reports. SmartCheck can report a
specific key that is missing from the registry, or identify a specific DLL that failed to load. The
cryptic Visual Basic runtime error message could be transformed into “Component Creation
Failure: ActiveX DLL c:\dll\mycomp.dll not found.”

Error And Event Tracking and Logging

Windows is an event-driven environment in which much of your program is executed in
response to Windows messages and other events. SmartCheck logs events as they occur, so
you can see a complete history of events that led to a problem. SmartCheck logs the following
Visual Basic events:

• Error messages, including advanced analysis of Visual Basic runtime errors

• API calls you make from Visual Basic, including argument information

• Form and control creations for Visual Basic

• Object interfaces including setting and using control properties and methods

• Object events, such as click or load

• Visual Basic built-in functions, including arguments

• Value coercions

• Handled runtime errors, including the error handler, and where it returns

You can also use SmartCheck to view system API calls, Windows messages and hooks, and
output debug strings, all of which can prove especially valuable when you are analyzing your
C, C++ or Delphi components, or when you need to drill deeper into Visual Basic.

Windows API Checking

When doing Visual Basic development, you will often need to use Windows API calls to
perform functions Visual Basic can’t handle directly. Because API calls are built and
documented for C and C++ developers, you may pass parameters incorrectly or fail to check
return codes when making Windows API calls. When these calls fail, Visual Basic does not
provide any information on how or why they failed. SmartCheck finds and highlights
incorrect usage or failure of Windows API calls.

4 SmartCheck Basics

The SmartCheck Solution

Visual Basic Argument Checking

Passing invalid arguments to functions can result in vague Visual Basic error messages, such as
the well-known “Error 5 - Invalid procedure call or argument”, which burdens you with the
effort of pinpointing the cause of the error. This effort can be especially time-consuming
when an error occurs on a complex line of code in which many Visual Basic keywords are
used, and many arguments are passed. SmartCheck tracks arguments and returns from Visual
Basic functions, and can identify the specific value that caused an error, as well as provide
details on the value that was expected.

Value Coercion Detection

Visual Basic allows you to use variants, that is, variables that do not have explicitly specified
data types. A variant’s data type may change automatically, at runtime, according to the
context in which it is used.

Incorrect

 use of variants can result in particularly hard-to-find
errors, because value coercions may occur without your intention.

In addition, Visual Basic performs automatic type adjustments of non-variants, which can
result in lost information, as in this example:

dim d as double
dim i as integer
...
i = d

SmartCheck detects and reports value coercions as they happen. You can use this information
to isolate errors and, in general, to assess your use of variants. For example, after reviewing the
SmartCheck information on value coercions you may choose to declare the data types of
certain variables explicitly to eliminate excessive conversions, and thus improve program
performance.

Error Detection in Third-party Components

You may often use ready-made components, such as ActiveX controls, to incorporate special
capabilities into your Visual Basic projects. Because these components are often purchased,
rather than being developed in-house, you may not have the source code for them. However,
since these components are critical to your application, you need to ensure their correct use,
and even be able to detect problems in them.

Like all NuMega products, SmartCheck checks third-party components, and includes
NuMega's award-winning error checking for C/C++ and Delphi components. If you do have
the source code for any component, SmartCheck will pinpoint the line in the source code at
which an error occurs.

Flexible Environment

NuMega SmartCheck 5

Unlike ordinary heap checkers that are limited to finding common memory errors,
SmartCheck is a sophisticated error-detection tool that validates the latest windows APIs
including ActiveX, DirectX, OLE, COM, and ODBC. Additionally, SmartCheck detects
errors in executable files, dynamic link libraries, third-party modules, and OLE components.
SmartCheck also pinpoints static, stack, and heap errors, as well as memory and resource
leaks, in the C, C++ and Delphi components you use with your Visual Basic applications.

Flexible Environment

SmartCheck provides a flexible environment. You can:

• Set SmartCheck options and launch SmartCheck from Microsoft Visual Basic. When
SmartCheck starts, it automatically compiles and starts running your program.

• Start SmartCheck as an independent application, rather than launching it from Visual
Basic.

• Start SmartCheck from a command line or automate a series of tests from a batch file.

Windows Compliance Assurance

To assure your program’s ability to run on all Win32 variants, SmartCheck creates compliance
reports that identify calls specific to Windows NT 4.0, Windows NT 5.0, Windows 95,
Windows 98, Windows CE 2.0, and Win32s. SmartCheck also displays your program’s use of
Visual Basic built-in functions, support routines, ANSI C functions, and ANSI C Extensions.

Customer Assistance

For Non-technical Issues

NuMega Customer Service is available to answer any questions you might have regarding
upgrades, serial numbers and other order fulfillment needs. Customer Service is available from
8:30am to 5:30pm EST, Monday through Friday. Call:

• In the U.S. and Canada: 888-283-9896

• International: +1 603 578 8103

6 SmartCheck Basics

The SmartCheck Solution

For Technical Issues

NuMega Technical Support can assist you with all your technical problems, from installation
to troubleshooting.

Before contacting technical support please read the relevant sections of the product
documentation and the ReadMe files.

You can contact Technical Support by:

Before contacting Technical Support, please obtain and record the following information:

• Product/service pack name and version

• Product serial number

• System configuration: operating system, network configuration, amount of RAM,
environment variables, and paths

• Name and version of your compiler and linker and the options you used in compiling
and linking

• Problem details; settings, error messages, stack dumps, and the contents of any diagnostic
windows

• If the problem is repeatable, the details of how to create the problem

E-Mail Include your serial number and send as many details as
possible to Tech@numega.com

World Wide Web Submit issues and access our support knowledge base at
www.numega.com. Go to Support.

Telephone Telephone support is available as a paid* Priority
Support Service from 8:30am to 5:30pm EST, Monday
through Friday. Have product version and serial number
ready.
In the U.S. and Canada, call: 888 NUMEGA-S
International customers, call: +1 603 578 8100

* Technical Support handles installation and setup issues
free of charge.

Fax Include your serial number and send as many details as
possible to 603 578 8401

Where to Go From Here

NuMega SmartCheck 7

Where to Go From Here

This manual provides an overview of SmartCheck and explains how to use its most
commonly-used features. These include:

• Checking code

• Viewing data

• Configuring error detection and reporting

• Checking compliance

For detailed information, see the SmartCheck online Help. To access a list of SmartCheck
Help topics from Visual Basic, click Help, then click SmartCheck Help Topics.

8 SmartCheck Basics

The SmartCheck Solution

NuMega SmartCheck 9

2

Checking and

Analyzing Programs

SmartCheck makes checking code so easy and convenient that every member of your
development team can use SmartCheck daily to test his or her code. SmartCheck analyzes
your executable image, DLLs, and OCXs as they execute, so you do not need to recompile or
relink your program. Simply run the program under SmartCheck, which works in the
background, and automatically detects all the categories of errors described here.

Error SmartCheck Error Detection

Visual Basic
Runtime
Errors

Many Visual Basic runtime error messages are general descriptions that encompass a
range of error conditions. SmartCheck analyzes Visual Basic runtime errors and
provides specific, detailed explanations of the conditions that caused them.

Procedure
and Function
Failures

SmartCheck detects errors that result from incorrect use of API functions and built-in
Visual Basic functions. It reports specific causes of function failures, such as the use of
incorrect data types, or out-of-range values, as arguments to functions.

Interface
Method
Failures

SmartCheck detects invalid arguments and return codes for OLE interface methods.

Leaks SmartCheck detects memory and resource leaks. Memory leaks occur when memory
is allocated, but never freed. SmartCheck detects memory leaks caused by Windows
memory allocation functions, such as HeapAlloc, GlobalAloc, and LocalAlloc, and
standard C and C++ allocation routines including malloc and new.

Resource leaks occur when windows specific resources, such as HMENU, HKEY, and
HCURSOR, are allocated by your program, but not released back to the system.
Resource leaks can consume excess memory and degrade system performance.

Note that SmartCheck tracks

memory and resource

 allocations specifically as they
pertain to the Windows API and to components written in languages such as C or C++.
This specific type of tracking does not apply directly to programs or components
written in Visual Basic.

10 SmartCheck Basics

Checking and Analyzing Programs

As described in the following sections, you can run SmartCheck:

• from the Visual Basic Development Environment

• as a stand-alone application

• from the command line

Starting SmartCheck from Visual Basic

You can set SmartCheck options and launch SmartCheck from within Visual Basic. When
you launch SmartCheck, it automatically compiles and starts running your program.

To start checking a program with SmartCheck from within Visual Basic:

1

On the File menu, click Open Project, then find and open the project you want to check.

2

On the Project menu, click Project Properties, then click the Compile tab. Make

sure

these options are selected:

à

Compile to Native Code

à

No Optimization

à

Create Symbolic Debug Info

3

On the DevPartner menu, click Run with SmartCheck.

4

Use options in the SmartCheck dialog to either review and change Visual Basic project
properties before proceeding, or start SmartCheck.

When SmartCheck starts, if necessary, it automatically compiles and starts running your
program.

From this point on, you are working within the SmartCheck environment, and program
checking occurs exactly as described from step 5 onward in the next section.

Memory SmartCheck detects overwriting and underwriting of memory in dynamically allocated
memory, local or stack memory, and global or static memory.

Pointer Bad pointers frequently cause errors. To help you eliminate them, SmartCheck checks
for:

Operations on null pointers.

Operations on pointers that do not point to valid data.

Attempts to free handles without unlocking them.

Error SmartCheck Error Detection

Checking Programs With SmartCheck

NuMega SmartCheck 11

Checking Programs With SmartCheck

To use SmartCheck as a stand-alone application:

1

Click the Windows Start button, and then point to Programs. Point to the folder that
contains SmartCheck, and then click SmartCheck.

2

On the File menu, click Open.

3

Select the file you want to load and click Open.

4

On the Program menu, click Start.

SmartCheck displays the Program Results window and starts your program. The Program
Results window displays the errors and events SmartCheck detects.

5

As you use your
application, SmartCheck
works in the background.
When SmartCheck detects
an error, it displays
detailed information about
it.

You can click:

• Acknowledge to
continue checking your
program.

• End to stop your
program.

• Explain to view a
detailed explanation of
the error, with
suggested solutions.

• The arrow (the
rightmost) button to
view source code and
call stack information.

You cannot suppress
terminal errors, such
as Visual Basic run-
time errors.

• Suppress if you do not want SmartCheck to report the error again. SmartCheck then
lets you choose the scope for which it suppresses the error (within the funciton, within
the source file, within the EXE or DLL, or anywhere it occurs) and lets you add a
remark. You can also save suppression information for future runs of the program. See

Suppressing Errors

on page 16.

12 SmartCheck Basics

Checking and Analyzing Programs

• Go to Source to go directly to the source code that caused this error, in Visual Basic.
(This option is only available if you started SmartCheck from Visual Basic.) After you
review or change your project, you can either return to the active SmartCheck session
or start a new SmartCheck session. See

Going to Source Code in Visual Basic

on page
15.

• Report Errors Immediately, , to have SmartCheck finish checking your program
without pausing to report each subsequent error.

• Event Reporting, , to turn event reporting off or on. This option allows you to
capture information relevant to testing your program, while eliminating the overhead
of unnecessary event reporting. When this option is off, SmartCheck reports only
terminal errors. See

Turning Event Reporting On and Off

on page 13.

When you are done checking your program, use the data in the Program Results window to
analyze your program. For example, click an error in the Program Results window to display
the line of code in which SmartCheck detected the error. See

Viewing the Results of Your Error
Detection Session

on page 14.

Displays errors and events
that occur in your program.

Displays source code for the selected error.

Displays detailed information
 related to the selected error or event.

Checking Programs With SmartCheck

NuMega SmartCheck 13

Starting SmartCheck From the Command Line

Start SmartCheck from the command line when you want to:

• Pass a file to SmartCheck to open at initialization.

• Automate a series of tests from a batch file.

You can use the SMARTCHK command with .SCX, .SCE, and .EXE files as follows:

SMARTCHK [foo.scx]

SMARTCHK [foo.sce]

SMARTCHK [[arg1 arg2] foo.exe [app_arg1 app_arg2]]

(SmartCheck assigns .SCX as the default extension for Compliance report files and .SCE as
the default extension for program results files.)

SmartCheck provides these optional switches.

Turning Event Reporting On and Off

You can turn SmartCheck event reporting on and off while executing your program. This lets
you capture information relevant to your testing and debugging tasks, while eliminating the
overhead of unnecessary event reporting. It is especially useful when debugging applications
with many initialization events, such as database applications, or applications that run
continuously, such as servers.

On the Program menu, select Event Reporting to turn reporting on or off.

When reporting is on, SmartCheck captures and reports all events specified by the current
Error Detection and Reporting settings for your project. When reporting is off, SmartCheck
captures and displays only terminal errors. When Event Reporting is turned back on from the
off state, SmartCheck correctly displays event nesting levels relative to the point at which
Event Reporting was restarted.

Switch Description

/B logfile Run SmartCheck in batch mode. All operations are executed with no user input
required. The results are saved in “logfile.” This switch overrides /L, /M, and /S.

/L Disable start-up splash screen.

/M Start SmartCheck minimized.

/S Disable immediate error reporting.

/W<dir> Specify the working directory. The directory path must immediately follow the /w
argument. Do not use a space to separate the directory path from the argument.

14 SmartCheck Basics

Checking and Analyzing Programs

Viewing the Results of Your Error Detection Session

SmartCheck places a wealth of information at your fingertips, including:

• Arguments passed to Visual Basic built-in functions and API functions.

• The line in the source code in which SmartCheck detected an error. In addition to
viewing the code in the SmartCheck source pane, you can go directly to the line of code
in the Visual Basic code window.

• The error’s corresponding call stack.

• The source code for any function in the call stack.

• The point at which memory is allocated (for errors that involve a memory block that is
allocated elsewhere).

• Online Help for the error.

Locating Errors

Some errors may be nested under the events in which they occurred, and therefore not
immediately visible under Program Results. Here is a convenient way to locate and review the
errors:

1 On the View menu, select Show Errors and Leaks only.

2 Click on an error message that you want to examine.

3 On the View menu, select Show Errors and Specific Events to view the sequence of events
that led to the error.

Displaying Source Code and Call Stack Data

Click an error to display the following:

• The source code in which SmartCheck detected the error.

SmartCheck highlights the line that contains the error by framing it and displaying it in
red.

• The error’s call stack.

SmartCheck lists each function in the stack, the file in which the function is located, and
the line on which the function is found.

A statement of the form functionname!number indicates that no debug information is
present for that function. functionname identifies the module (that is, the dll or EXE)
that contains the function. The number following the exclamation point identifies the
relative offset of the function in that module.

Viewing the Results of Your Error Detection Session

NuMega SmartCheck 15

Using the Call Stack

The stack frame lets you display the source code for any function in the stack. This is useful
for seeing the events that led to the error. If the error involves a memory block that is allocated
elsewhere, the stack frame also lets you view the point at which the memory is allocated.

To view a particular function, click the corresponding function in the stack. If the error deals
with memory that was allocated either from the heap or from earlier on the call stack, you can
choose one of the following before selecting a function:

• Location of Error

Lists the functions that led to the error.

• Point of Allocation

Lists the functions where memory is allocated.

• Point of Deallocation

Lists the functions where memory is freed.

Going to Source Code in Visual Basic

You can go directly from an error or event to the associated line of source code in Visual Basic.
After reviewing your project in Visual Basic, you can either return to the active SmartCheck
session or restart the SmartCheck session. Be aware that:

• Go to Source is active only if you started the SmartCheck session from Visual Basic.

• If you make changes to your Visual Basic project, then return to SmartCheck, your
source files may be out-of-synch with the debug information in the active SmartCheck
session. After making changes to your project, you should generally re-compile it, then
run the updated version of your program under SmartCheck.

• The code must be from a module that is contained in the current Visual Basic project.

To go to source code:

1 Click on the error or event in the Program Results window.

2 Click the right mouse button, and then click Go to Source. SmartCheck opens the
source file in Visual Basic, and then locates and highlights the relevant line of source
code.

After reviewing your project:

1 On the DevPartner menu, select Run with SmartCheck.

2 In the SmartCheck dialog, you can either:

à Click Return to SmartCheck to return to the active SmartCheck session.
à Click Run with SmartCheck to recompile and restart the session.

16 SmartCheck Basics

Checking and Analyzing Programs

Displaying Help for the Error

SmartCheck provides the following
assistance for each type of error it
detects:.

• A complete description of the error.

• Sample error code.

• Suggestions for correcting the error

To display Help for a particular error, do
the following:

1 Click the error on which you need
Help.

2 Click the right mouse button, and
then click Explain.

Suppressing Errors

You can suppress an error while you check your program or after you analyze it in the
Program Results window. Suppressed errors:

• Are ignored by the Report Errors Immediately command, that is, SmartCheck does not
display the Program Error Detected window for suppressed errors.

• Can either be hidden from view or displayed in a grayed-out state under Program
Results. On the View menu, select Suppressed Errors to hide or show suppressed errors.

You may want to suppress an error if it is generated by code from a third-party DLL, an OCX
or another developer, or if your code handles it properly.

You cannot suppress
terminal errors, such
as Visual Basic run-
time errors.

To suppress an error, do the following:

1 Click the error you want to suppress.

2 Click the right mouse button, and then click Suppress.

3 Select one of the following suppression scope options:

• Suppress this Error Only When it Occurs in This Function

• Suppress this Error Only When it Occurs in This Source File

• Suppress this Error Only When it Occurs in This EXE or DLL

Viewing the Results of Your Error Detection Session

NuMega SmartCheck 17

• Suppress this Error Regardless of Where it Occurs

4 If you want SmartCheck to suppress the error automatically the next time you check the
program, select Save Suppression Information. Otherwise, SmartCheck only suppresses
this error when you display the results of this error detection session.

5 If you want to add a notation to the error you are suppressing, add a remark in the text
box.

Suppression
information for the
current module is
stored in a .SUP file
in the directory of the
executable file being
debugged.

SmartCheck adds the suppressed error to the list it maintains in the Error Suppression tab
within the program settings. See Customizing Error Suppression Settings on page 25 for
information about removing errors from the suppression list.

Changing the Results View

By default, the Program Results window displays errors, threads, leaks and Visual Basic events.
However, you can change the type of data it displays by changing its view. On the View menu,
click one of the following to change the Results view:

• Show Errors and Leaks Only

Displays errors, threads, and leaks.

• Show All Events

Displays errors, threads, leaks and all events.

The Error Detection
and Event Reporting
program settings
determine the type of
errors and events that
SmartCheck detects
and reports. See
Chapter 3:
Customizing Error
Detection and
Reporting on page
21.

• Show Errors and Specific Events

Displays errors, threads, and specific
types of events that you select. Click
Specific Events on the View menu,
then select the events you want to view
from the available list, as shown in the
sample illustration.

18 SmartCheck Basics

Checking and Analyzing Programs

The Program Results window uses the following icons to represent errors and events:

Icon Event Type Description

Errors SmartCheck detected an error in your program.

Resource, Memory
and OLE Leaks

SmartCheck detected a memory, resource, or interface method
leak. The message describes the leak.

Thread-Starts SmartCheck detected the creation of a thread.

Session
Information

SmartCheck identifies the current session and the system on
which it is running.

Event Reporting SmartCheck inserts a statement in the event log each time you
enable or disable event reporting.

Thread Context
Switch

SmartCheck detected that your program has switched from one
thread to another.

Visual Basic
Intrinsics and
Local API Calls

SmartCheck logs this event each time your Visual Basic program
uses an intrinsic (built-in) Visual Basic function such as MsgBox,
Mid$ and CurDir. Local API calls are calls you make from Visual
Basic to external libraries such as WIN32API.

API Calls from C,
C++ and System
code

OLE Method Calls
from system code

SmartCheck detects when an API or OLE call is made on behalf of
your program (as opposed to API calls that you make explicitly in
your Visual Basic code).

Note that a running Visual Basic program makes many calls to
the Windows API behind-the-scenes. By default, SmartCheck does
not report these behind-the-scenes calls, since knowing about
them is generally not useful. However, it does, by default, report
all explicit API calls you make within your Visual Basic code and
add them to the event log, tagged with the icon for “Visual Basic
Intrinsics and Local API Calls”.

Object Property
Get

Object Property
Let

Object Method
Call

These events represent setting and referencing properties and
calling methods of your Visual Basic controls. Examples include:
setting Command1.Caption = “Hello”; testing the value of
Command1.Caption; Command1.SetFocus.

When a property “let” occurs, SmartCheck shows the new value
being assigned; when a property “get” occurs, SmartCheck shows
the line of code in which the property was retrieved (though not
the value being retrieved).

While actions involving controls are reported, note that method
calls on external objects (such as “Excel.Worksheet”) will not be
seen.

SmartCheck supports all built-in Visual Basic controls, and all the
controls that come with the Visual Basic 5.0 Enterprise and Visual
Basic 6.0 Enterprise editions (at the time of the printing of this
manual). SmartCheck can also “see into” third-party OCXs that
use IDispatch::Invoke to communicate with Visual Basic.
(SmartCheck does not log events fired by controls that use the
“dual interface” mechanism).

Viewing the Results of Your Error Detection Session

NuMega SmartCheck 19

Visual Basic Form
Creations

Control Creations

These events represent the creation of Visual Basic forms and
controls.

Note that after either of these events occurs, the control exists
although no user-written code has been executed for the control
yet.

Typically, when a new form loads, you will see a form creation
event, followed by events that represent the creation of the
controls contained within the form. It is important to realize that
the reporting of a form creation event is distinct from the
reporting of a call to a user-written Form_Load procedure.

Object Events These events represent user-written handlers that execute when
specific actions are invoked. For example, if you write a “Click”
handler for the Command1 button, SmartCheck reports an event
with the text “Command1_Click”. These events are specific to
control-related handlers.

Visual Basic Value
Coercions

SmartCheck logs this event each time Visual Basic performs a
value coercion, that is, converts a variant’s value from one data
type to another. For example, if you pass the string “123” to a
function that expects a numeric value, Visual Basic converts the
string to a numeric type. SmartCheck logs both the input value
and type and the output value and type.

SmartCheck coercion reporting is particularly valuable for less
obvious coercions automatically performed by Visual Basic. For
example, if you pass a variable of type “Single”, with a value of
123.456, to a function that expects an integer parameter, Visual
Basic “silently” truncates the value to 123.

Visual Basic Error
Handlers and
Resumes

SmartCheck tracks any runtime errors you handle in your Visual
Basic code. It shows you when the error occurs, the error handler
statement that executes and the statement at which your
program resumes after the error. Error handlers and resumes are
filtered out by default.

Window and
Dialog Messages

SmartCheck adds a Message event to the event log when the
program processes a dialog or Windows message.

Hooks SmartCheck adds a Hook event to the event log when the
program processes a Windows hook call. The function name and
arguments are included on the line.

Comments SmartCheck adds a Notes event to the event log when your
program makes a call to OutputDebugString.

Icon Event Type Description

20 SmartCheck Basics

Checking and Analyzing Programs

Viewing Version Information

SmartCheck collects version information and the complete path and file name of every
module loaded by your program. On the View menu, select Version Info to display this
information. On the File menu, select Print to print the displayed report.

Version Info is only available when the Program Results window is active.

Printing or Saving Your Results

On the File menu, click Print to print the contents of the Program Results window.

To save the results of your error-detection session for later viewing:

1 If your application is running, quit your application.

2 On the File menu, click Save As.

3 Enter a file name and select the location in which you want to save the file.

By default, SmartCheck saves the file in the directory that contains the executable.

NuMega SmartCheck 21

3 Customizing Error
Detection and
Reporting

SmartCheck provides a series of program settings that let you determine how it detects and
reports errors and events. These program settings control the following:

Program Setting Description

Error Detection Determines the types of errors SmartCheck detects and reports.

Reporting Determines if SmartCheck collects, analyzes and reports handled Visual Basic
runtime errors, collects and reports data about calls your program makes to
libraries and Windows APIs, and sets event reporting on by default.

Files to Check Determines the modules SmartCheck checks.

Error Suppression Determines if SmartCheck reports errors in specific libraries and instances.

Program Info Determines the program search path and directory SmartCheck uses to locate
your program files and establishes program parameters to pass as command-line
arguments.

22 SmartCheck Basics

Customizing Error Detection and Reporting

Customizing Program Settings

To modify the program settings:

1 Do one of the following:

• If you are using Visual Basic, click DevPartner, then click SmartCheck Settings.

• If you are using the SmartCheck application, click Program, then click Settings.

2 Click the tab for the settings group you want to modify.

The sections that follow highlight the settings for each of these tabs.

3 When you finish modifying the settings, click OK to save your changes.

Customizing Error Detection Settings

The Error Detection settings
determine how SmartCheck detects
and reports errors.

Type of Errors to Check For

SmartCheck provides a default
settings configuration that is
designed to get you up and running
as quickly as possible, while
addressing conditions that are
generally of most concern to Visual
Basic developers. You can specify a
unique error detection scheme, as
needed, for each program you run
under SmartCheck. When you
click on an error category in this list, SmartCheck displays any sub-settings associated with
the selected category under Additional Settings.

For information about controlling the events SmartCheck reports, seeCustomizing Reporting
Settings on page 23.

Report Errors Immediately

Determines if SmartCheck automatically displays the Program Error Detected window each
time it encounters an error in your program. Displaying the Program Error Detected window
is useful for seeing errors in context. If you prefer, clear this setting to check your program
without interruption. SmartCheck always maintains a log of your error-detection session, so
you can see your program’s errors and events at your convenience.

Customizing Program Settings

NuMega SmartCheck 23

Save these settings as the initial values for new programs

Depending on your development environment, you may want to permanently modify your
changes to the Error Detection settings. Select this setting to apply your modifications to all
subsequent programs you check with SmartCheck.

Advanced Settings

Additional error detection settings are available on the Advanced Settings dialog. To review all
the Advanced settings, bring up the Advanced Settings dialog in SmartCheck and use the
context-sensitive help to obtain popup definitions for specific items. Several settings that are
important when addressing particular testing needs are mentioned here:

• Report errors even if no source code is available: It is generally assumed that you will be
testing your own programs, for which source code is present. Therefore this setting is
disabled by default. However, there may be instances in which you need to check for
errors in third-party components, for which you do not have source code. In these
instances, you need to select this setting before checking your program.

• Performance Optimizations: SmartCheck provides three settings that are specifically
related to performance optimization, Cache program events and Defer program results
until program terminates, which are disabled by default, and Suppress system API and
OLE calls, which is enabled by default. The default settings generally result in the most
efficient SmartCheck performance. However, if you are testing a database application,
you may improve performance by enabling Cache program events and Defer program
results until program terminates. If you are attempting to debug a hard-to-solve
problem, and want to track system API and OLE calls, you should clear the setting to
Suppress system API and OLE calls, then re-run your program.

Customizing Reporting Settings

Reporting settings instruct
SmartCheck whether or not to:

• Set event reporting on by
default when the given project
is loaded

• Collect, analyze and report
handled Visual Basic runtime
errors in your program

• Collect the Windows messages
your program sends and
receives

24 SmartCheck Basics

Customizing Error Detection and Reporting

Use event reporting to solve the following problems:

Files To Check

SmartCheck automatically checks all the source files for your program and its related static
and run-time DLLs and OCXs. However, you might want to check only a specific portion of
your code. For example, you might want to limit error detection to a specific module or
source files that comprise a module.

To limit the code SmartCheck
checks, clear the modules or source
files you do not want to check.

Note Four of the listed files,
MSVBVM50.DLL,
MSVBVM60.DLL, OLE32.DLL,
and OLEAUT32.DLL, must
remain selected for SmartCheck to
work properly.

Problem Area Suggested Analysis

Handled Visual
Basic runtime
errors

Diagnose hard-to-solve conditions or errors, that are not adequately addressed
by your program’s error-handling.

Sequences Examine messages and how your program responds to them. For instance, did
the messages come in the order you expected?

Check the API calls your program made in response to messages.

Performance Look for indications of wasted time. For instance, is your program painting a
window twice in succession on two different messages? Your program may be
making hundreds or even thousands of unnecessary memory allocations or file
reads. You can block these allocations into a few big operations to improve
performance.

Threads Look at the thread-switching and thread interaction. This helps you debug multi-
thread problems with semaphores in critical sections.

API failures Look at the arguments passed to APIs. When pointers are passed, trace the data
to which they point.

Customizing Program Settings

NuMega SmartCheck 25

Excluding Dynamically Loaded Modules from Checking

Before you check a program for the first time, the Modules list box displays only the DLLs
and OCXs loaded at program startup. When checking a program, SmartCheck tracks and
records all dynamically loaded modules. Subsequently, each time you display the Modules and
Files tab, you will see a list that has been updated to include all the modules recorded by
SmartCheck during the previous “run”. To exclude dynamically loaded modules from
checking:

• Before SmartCheck has updated the list, you can add the modules to the list yourself,
then clear their associated check boxes.

• After SmartCheck has updated the list, simply review the list and clear the modules or
related source files that you do not want to check.

Customizing Program Information Settings

Use the Program Info settings to establish the following for your program:

• Command Line Arguments

• Working Directory

• Temporary event file directory. (This option is useful if your system drive is nearly full,
since SmartCheck event files are sometimes quite large.)

• Source File Search Path

Customizing Error Suppression Settings

Each time you suppress an error, SmartCheck adds the suppression information to the
suppression library. SmartCheck uses the suppression library to determine which errors to
suppress for future runs of the program. In addition to the individual program libraries,
SmartCheck supplies suppression libraries for common development environments, OCXs
and DLLs, including Visual Basic, MFC, OWL, and the Delphi VCL.

26 SmartCheck Basics

Customizing Error Detection and Reporting

As your work progresses, you may want to delete a suppression item, or you may want
SmartCheck to check your program without referring to the library. Perform the actions in
the following table to view and modify libraries and suppression items.

Note: You can only delete suppression items from your program library. You cannot delete
suppression items from the supplied system module libraries.

To Do this

Display the list of suppression items for
a particular library

Select the name of the library

Enable or disable a library Select or clear the checkbox for the library

Sort the suppression items in a library Click a sorting criterion above the list of items

Delete a suppression item Select the item from the list, and then click Remove

Suppression Libraries

Suppression Items

Sorting Criteria

NuMega SmartCheck 27

4 Checking
Compliance

Microsoft provides a collection of 32-bit application programming interfaces (APIs) called
Win32. Win32 is implemented under Windows NT, Windows 95, Windows 98 and
Windows CE 2.0. A portion of Win32 is also implemented on Windows 3.1 as Win32s.

Although many of the APIs within Win32 support these multiple versions of Windows, some
are platform specific. You can unknowingly use a call or set of calls that are available on one
platform, but not another.

To assure that your program is compliant across the various Windows platforms and Win32s,
SmartCheck provides compliance reports that check your program’s APIs. Use these reports to
determine if your program’s APIs are available on all Win32 platforms or just a subset.
Additionally, SmartCheck categorizes your program’s use of C Run-Time Library calls into
ANSI and non-ANSI and provides lists of Visual Basic functions and support routines used
by your program.

The following example illustrates a compliance report.

28 SmartCheck Basics

Checking Compliance

Checking API Compliance

The best strategy for ensuring API compliance is to attend to it as you design a program.
Otherwise, finding and fixing API compliance-related problems can be a long and tedious
task, especially if you postpone the job until after a program is completed. You can use
SmartCheck compliance checking to produce either a Program Compliance or Event
Compliance report:

• Program Compliance checks compliance for all functions to which your EXE file refers.
This report does not check API calls made by DLLs to which the EXE points and does
not check API calls made from Visual Basic code. Use the Event Compliance report to
address these two issues.

• Event Compliance uses the results of your error-detection session and covers only those
WIN32 , C Run-Time Library and Visual Basic functions that were called when you ran
the program. This report includes calls made by DLLs to which your program points.

To Produce a Program Compliance Report

To produce a Program Compliance report:

1 Open the program for
which you want to
produce the report.

2 On the View menu,
click Compliance
Report.

3 In the Compliance
Report window, at Run
compliance report on,
select the .EXE.

4 Select the operating
systems, Visual Basic
categories and versions of C to be addressed by the report.

5 Click OK.

Checking API Compliance

NuMega SmartCheck 29

To Produce an Event Compliance Report

To produce an Event Compliance report:

1 Make sure event reporting is enabled.

2 Check the program, using all the functions you want included in the compliance report.

3 On the View menu, click Compliance Report.

4 In the Compliance Report window, at Run compliance report on, select the Program
Results item from the list.

5 Select the operating systems, Visual Basic categories and versions of C to be addressed by
the report.

6 Click OK.

30 SmartCheck Basics

Checking Compliance

NuMega SmartCheck 31

A
Analyzing programs 9, 23

ANSI C 5, 27

API
compliance 5, 28

errors 4

C
C Run-Time Library calls 5

Call-return event 18

Changing the Results view 17

Checking
API compliance 5, 28

program compliance 28

programs 9, 10

in SmartCheck 11

Comment event 18

Compliance 28

checking 5

Customizing program settings 21

D
Debugging environment 5

Detecting
errors 4, 9

E
Error detection settings 21, 22

Error event 18

Error suppression settings 21, 25

Error types 18

Errors
API 4

detecting 4

leak 4

memory 4

OLE 4

pointer 4

viewing 14

Event reporting settings 21, 23

Events 18

Call-return 18

Comment 18

Error 18

Expanded Call 18

Expanded Return 18

Hook 19

Leak 19

Message 19

OLE Call-return 18

OLE Leak 19

Start of Thread 19

Thread Context Switch 19

viewing 14

Expanded Call event 18

Expanded Return event 18

H
Hook event 19

L
Leak errors 4, 18

Leak event 19

M
Memory errors 4

Message event 19

Modules and files settings 21

O
OLE Call-return event 18

OLE errors 4

OLE Leak event 19

P
Pointer errors 4

Program compliance 28

Program information settings 21,
25

Programs
analyzing 9

checking 9

R
Results view 14

changing 17

Results window 14

S
Show

All Events 17

Errors and Leaks Only 17

Errors and Specific Events 17

Smart Debugging 10

SmartCheck
benefits 2

Index

32 SmartCheck Basics

Index

checking programs 11

settings 21

Start of Thread event 19

T
Thread Context Switch event 19

U
Using

Program Compliance 28

V
Viewing

errors 14

events 14

W
Windows compliance 5

	1 The SmartCheck Solution
	Check Early, Check Often— Our Philosophy
	The Benefits of Using SmartCheck
	Fatal Runtime Error Analysis
	Error And Event Tracking and Logging
	Windows API Checking
	Visual Basic Argument Checking
	Value Coercion Detection
	Error Detection in Third-party Components

	Flexible Environment
	Windows Compliance Assurance
	Customer Assistance
	For Non-technical Issues
	For Technical Issues

	Where to Go From Here

	2 Checking and Analyzing Programs
	Starting SmartCheck from Visual Basic
	Checking Programs With SmartCheck
	Starting SmartCheck From the Command Line
	Turning Event Reporting On and Off

	Viewing the Results of Your Error Detection Session
	Locating Errors
	Displaying Source Code and Call Stack Data
	Using the Call Stack
	Going to Source Code in Visual Basic
	Displaying Help for the Error
	Suppressing Errors
	Changing the Results View
	Viewing Version Information

	Printing or Saving Your Results

	3 Customizing Error Detection and Reporting
	Customizing Program Settings
	Customizing Error Detection Settings
	Customizing Reporting Settings
	Files To Check
	Customizing Program Information Settings
	Customizing Error Suppression Settings

	4 Checking Compliance
	Checking API Compliance
	To Produce a Program Compliance Report
	To Produce an Event Compliance Report

